Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.456
Filtrar
1.
Exp Cell Res ; 437(2): 114017, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555013

RESUMO

Thyroid hormone receptor ß (THRß) is a member of the nuclear receptor superfamily of ligand-modulated transcription factors. Upon ligand binding, THRß sequentially recruits the components of transcriptional machinery to modulate target gene expression. In addition to regulating diverse physiological processes, THRß plays a crucial role in hypothalamus-pituitary-thyroid axis feedback regulation. Anomalies in THRß gene/protein structure are associated with onset of diverse disease states. In this study, we investigated disease-inflicting truncated variants of THRß using in-silico analysis and cell-based assays. We examined the THRß truncated variants on multiple test parameters, including subcellular localization, ligand-receptor interactions, transcriptional functions, interaction with heterodimeric partner RXR, and receptor-chromatin interactions. Moreover, molecular dynamic simulation approaches predicted that shortened THRß-LBD due to point mutations contributes proportionally to the loss of structural integrity and receptor stability. Deviant subcellular localization and compromised transcriptional function were apparent with these truncated variants. Present study shows that 'mitotic bookmarking' property of some THRß variants is also affected. The study highlights that structural and conformational attributes of THRß are necessary for normal receptor functioning, and any deviations may contribute to the underlying cause of the inflicted diseases. We anticipate that insights derived herein may contribute to improved mechanistic understanding to assess disease predisposition.


Assuntos
Receptores beta dos Hormônios Tireóideos , Fatores de Transcrição , Receptores beta dos Hormônios Tireóideos/genética , Ligantes , Fatores de Transcrição/genética , Mutação Puntual , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo
2.
Sci Rep ; 14(1): 7200, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531895

RESUMO

Unlike other thyroid hormone receptors (THRs), the beta 2 isoform (THRB2) has a restricted expression pattern and is uniquely and abundantly phosphorylated at a conserved serine residue S101 (S102 in humans). Using tagged and or phosphorylation-defective (S101A) THRB2 mutant mice, we show that THRB2 is present in a large subset of POMC neurons and mitigates ROS accumulation during ROS-triggering events, such as fasting/refeeding or high fat diet (HFD). Excessive ROS accumulation in mutant POMC neurons was accompanied by a skewed production of orexigenic/anorexigenic hormones, resulting in elevated food intake. The prolonged exposure to pathogenic hypothalamic ROS levels during HFD feeding lead to a significant loss of POMC neurons in mutant versus wild-type (WT) mice. In cultured cells, the presence of WT THRB2 isoform, but not other THRs, or THRB2S101A, reduced ROS accumulation upon exogenous induction of oxidative stress by tert-butyl hydroperoxide. The protective function of phospho-THRB2 (pTHRB2) did not require thyroid hormone (TH), suggesting a TH-independent role of the THRB2 isoform, and phospho-S101 in particular, in regulating oxidative stress. We propose that pTHRB2 has a fundamental role in neuronal protection against ROS cellular damage, and mitigates hypothalamic pathological changes found in diet-induced obesity.


Assuntos
Hipotálamo , Pró-Opiomelanocortina , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Fosforilação , Pró-Opiomelanocortina/metabolismo , Hipotálamo/metabolismo , Comportamento Alimentar , Hormônios Tireóideos/metabolismo , Dieta Hiperlipídica , Receptores dos Hormônios Tireóideos/metabolismo , Isoformas de Proteínas/metabolismo , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474099

RESUMO

Hypercapnia occurs when the partial pressure of carbon dioxide (CO2) in the blood exceeds 45 mmHg. Hypercapnia is associated with several lung pathologies and is transcriptionally linked to suppression of immune and inflammatory signalling through poorly understood mechanisms. Here we propose Orphan Nuclear Receptor Family 4A (NR4A) family members NR4A2 and NR4A3 as potential transcriptional regulators of the cellular response to hypercapnia in monocytes. Using a THP-1 monocyte model, we investigated the sensitivity of NR4A family members to CO2 and the impact of depleting NR4A2 and NR4A3 on the monocyte response to buffered hypercapnia (10% CO2) using RNA-sequencing. We observed that NR4A2 and NR4A3 are CO2-sensitive transcription factors and that depletion of NR4A2 and NR4A3 led to reduced CO2-sensitivity of mitochondrial and heat shock protein (Hsp)-related genes, respectively. Several CO2-sensitive genes were, however, refractory to depletion of NR4A2 and NR4A3, indicating that NR4As regulate certain elements of the cellular response to buffered hypercapnia but that other transcription factors also contribute. Bioinformatic analysis of conserved CO2-sensitive genes implicated several novel putative CO2-sensitive transcription factors, of which the ETS Proto-Oncogene 1 Transcription Factor (ETS-1) was validated to show increased nuclear expression in buffered hypercapnia. These data give significant insights into the understanding of immune responses in patients experiencing hypercapnia.


Assuntos
Receptores Nucleares Órfãos , Receptores de Esteroides , Humanos , Receptores Nucleares Órfãos/genética , Monócitos/metabolismo , Hipercapnia , Dióxido de Carbono , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Receptores de Esteroides/metabolismo , Proteínas de Ligação a DNA , Receptores dos Hormônios Tireóideos
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220511, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38310932

RESUMO

Thyroid hormones (TH) are central hormonal regulators, orchestrating gene expression and complex biological processes vital for growth and reproduction in variable environments by triggering specific developmental processes in response to external cues. TH serve distinct roles in different species: inducing metamorphosis in amphibians or teleost fishes, governing metabolic processes in mammals, and acting as effectors of seasonality. These multifaceted roles raise questions about the underlying mechanisms of TH action. Recent evidence suggests a shared ecological role of TH across vertebrates, potentially extending to a significant portion of bilaterian species. According to this model, TH ensure that ontogenetic transitions align with environmental conditions, particularly in terms of energy expenditure, helping animals to match their ontogenetic transition with available resources. This alignment spans post-embryonic developmental transitions common to all vertebrates and more subtle adjustments during seasonal changes. The underlying logic of TH function is to synchronize transitions with the environment. This review briefly outlines the fundamental mechanisms of thyroid signalling and shows various ways in which animals use this hormonal system in natural environments. Lastly, we propose a model linking TH signalling, environmental conditions, ontogenetic trajectory and metabolism. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Assuntos
Receptores dos Hormônios Tireóideos , Hormônios Tireóideos , Animais , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Vertebrados/metabolismo , Peixes/metabolismo , Anfíbios/metabolismo , Mamíferos/metabolismo
5.
Biomolecules ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397435

RESUMO

Thyroid hormones (THs) are essential in normal brain development, and cognitive and emotional functions. THs act through a cascade of events including uptake by the target cells by specific cell membrane transporters, activation or inactivation by deiodinase enzymes, and interaction with nuclear thyroid hormone receptors. Several thyroid responsive genes have been described in the developing and in the adult brain and many studies have demonstrated a systemic or local reduction in TH availability in neurologic disease and after brain injury. In this review, the main factors and mechanisms associated with the THs in the normal and damaged brain will be evaluated in different regions and cellular contexts. Furthermore, the most common animal models used to study the role of THs in brain damage and cognitive impairment will be described and the use of THs as a potential recovery strategy from neuropathological conditions will be evaluated. Finally, particular attention will be given to the link observed between TH alterations and increased risk of Alzheimer's Disease (AD), the most prevalent neurodegenerative and dementing condition worldwide.


Assuntos
Lesões Encefálicas , Glândula Tireoide , Animais , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Encéfalo/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Lesões Encefálicas/metabolismo
6.
Histol Histopathol ; 39(5): 543-556, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38116863

RESUMO

Although endogenous ligands for the orphan nuclear receptor 4A1 (NR4A1, Nur77), NR4A2 (Nurr1), and NR4A3 (Nor-1) have not been identified, several natural products and synthetic analogs bind NR4A members. These studies are becoming increasingly important since members of the NR4A subfamily of 3 receptors are potential drug targets for treating cancer and non-cancer endpoints and particularly those conditions associated with inflammatory diseases. Ligands that bind NR4A1, NR4A2, and NR4A3 including Cytosporone B, celastrol, bis-indole derived (CDIM) compounds, tryptophan/indolic, metabolites, prostaglandins, resveratrol, piperlongumine, fatty acids, flavonoids, alkaloids, peptides, and drug families including statins and antimalarial drugs. The structural diversity of NR4A ligands and their overlapping and unique effects on NR4A1, NR4A2, and NR4A3 suggest that NR4A ligands are selective NR4A modulators (SNR4AMs) that exhibit tissue-, structure-, and response-specific activities. The SNR4AM activities of NR4A ligands are exemplified among the Cytosporone B analogs where n-pentyl-2-[3,5-dihydroxy-2-(nonanoyl)]phenyl acetate (PDNPA) binds NR4A1, NR4A2 and NR4A3 but activates only NR4A1 and exhibits significant functional differences with other Cytosporone B analogs. The number of potential clinical applications of agents targeting NR4A is increasing and this should spur future development of SNR4AMs as therapeutics that act through NR4A1, NR4A2 and NR4A3.


Assuntos
Produtos Biológicos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/química , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Ligantes , Proteínas de Ligação a DNA/metabolismo , Membro 3 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo
7.
Thyroid ; 34(2): 243-251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149585

RESUMO

Background: The importance of thyroid hormones (THs) for peripheral body temperature regulation has been long recognized, as medical conditions such as hyper- and hypothyroidism lead to alterations in body temperature and energy metabolism. In the past decade, the brain actions of THs and their respective nuclear receptors, thyroid hormone receptor α1 (TRα1) and thyroid hormone receptor beta (TRß), coordinating body temperature regulation have moved into focus. However, the exact roles of the individual TR isoforms and their precise neuroanatomical substrates remain poorly understood. Methods: Here we used mice expressing a mutant TRα1 (TRα1+m) as well as TRß knockouts to study body temperature regulation using radiotelemetry in conscious and freely moving animals at different ambient temperatures, including their response to oral 3,3',5-triiodothyronine (T3) treatment. Subsequently, we tested the effects of a dominant-negative TRα1 on body temperature after adeno-associated virus (AAV)-mediated expression in the hypothalamus, a region known to be involved in thermoregulation. Results: While TRß seems to play a negligible role in body temperature regulation, TRα1+m mice had lower body temperature, which was surprisingly not entirely normalized at 30°C, where defects in facultative thermogenesis or tail heat loss are eliminated as confounding factors. Only oral T3 treatment fully normalized the body temperature profile of TRα1+m mice, suggesting that the mutant TRα1 confers an altered central temperature set point in these mice. When we tested this hypothesis more directly by expressing the dominant-negative TRα1 selectively in the hypothalamus via AAV transfection, we observed a similarly reduced body temperature at room temperature and 30°C. Conclusion: Our data suggest that TRα1 signaling in the hypothalamus is important for maintaining body temperature. However, further studies are needed to dissect the precise neuroanatomical substrates and the downstream pathways mediating this effect.


Assuntos
Hipotireoidismo , Receptores dos Hormônios Tireóideos , Camundongos , Animais , Receptores dos Hormônios Tireóideos/metabolismo , Temperatura Corporal , Tri-Iodotironina/farmacologia , Tri-Iodotironina/metabolismo , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Hormônios Tireóideos , Hipotálamo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo
8.
J Cell Biochem ; 124(12): 1948-1960, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992217

RESUMO

Thyroid hormones (TH) are important modulators of bone remodeling and thus, thyroid diseases, in particular hyperthyroidism, are able to compromise bone quality and fracture resistance. TH actions on bone are mediated by the thyroid hormone receptors (TR) TRα1 and TRß1, encoded by Thra and Thrb, respectively. Skeletal phenotypes of mice lacking Thra (Thra0/0 ) and Thrb (Thrb-/- ) are well-described and suggest that TRα1 is the predominant mediator of TH actions in bone. Considering that bone cells might be affected by systemic TH changes seen in these mutant mice, here we investigated the effects of TR knockout on osteoblasts exclusively at the cellular level. Primary osteoblasts obtained from Thra0/0 , Thrb-/- , and respective wildtype (WT) mice were analyzed regarding their differentiation potential, activity and TH responsiveness in vitro. Thra, but not Thrb knockout promoted differentiation and activity of early, mature and late osteoblasts as compared to respective WT cells. Interestingly, while mineralization capacity and expression of osteoblast marker genes and TH target gene Klf9 was increased by TH in WT and Thra-deficient osteoblasts, Thrb knockout mitigated the responsiveness of osteoblasts to short (48 h) and long term (10 d) TH treatment. Further, we found a low ratio of Rankl, a potent osteoclast stimulator, over osteoprotegerin, an osteoclast inhibitor, in Thrb-deficient osteoblasts and in line, supernatants obtained from Thrb-/- osteoblasts reduced numbers of primary osteoclasts in vitro. In accordance to the increased Rankl/Opg ratio in TH-treated WT osteoblasts only, supernatants from these cells, but not from TH-treated Thrb-/- osteoblasts increased the expression of Trap and Ctsk in osteoclasts, suggesting that osteoclasts are indirectly stimulated by TH via TRß1 in osteoblasts. In conclusion, our study shows that both Thra and Thrb differentially affect activity, differentiation and TH response of osteoblasts in vitro and emphasizes the importance of TRß1 to mediate TH actions in bone.


Assuntos
Receptores dos Hormônios Tireóideos , Receptores alfa dos Hormônios Tireóideos , Camundongos , Animais , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Biologia , Ligante RANK/metabolismo , Camundongos Knockout
9.
J Mol Evol ; 91(6): 963-975, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006429

RESUMO

For several decades, it has been known that a substantial number of genes within human DNA exhibit overlap; however, the biological and evolutionary significance of these overlaps remain poorly understood. This study focused on investigating specific instances of overlap where the overlapping DNA region encompasses the coding DNA sequences (CDSs) of protein-coding genes. The results revealed that proteins encoded by overlapping CDSs exhibit greater disorder than those from nonoverlapping CDSs. Additionally, these DNA regions were identified as GC-rich. This could be partially attributed to the absence of stop codons from two distinct reading frames rather than one. Furthermore, these regions were found to harbour fewer single-nucleotide polymorphism (SNP) sites, possibly due to constraints arising from the overlapping state where mutations could affect two genes simultaneously.While elucidating these properties, the NR1D1-THRA gene pair emerged as an exceptional case with highly structured proteins and a distinctly conserved sequence across eutherian mammals. Both NR1D1 and THRA are nuclear receptors lacking a ligand-binding domain at their C-terminus, which is the region where these gene pairs overlap. The NR1D1 gene is involved in the regulation of circadian rhythm, while the THRA gene encodes a thyroid hormone receptor, and both play crucial roles in various physiological processes. This study suggests that, in addition to their well-established functions, the specifically overlapping CDS regions of these genes may encode protein segments with additional, yet undiscovered, biological roles.


Assuntos
Genes erbA , Genoma Humano , Animais , Humanos , Genoma Humano/genética , Receptores dos Hormônios Tireóideos/genética , Mutação , Proteínas/genética , Fases de Leitura Aberta/genética , DNA , Mamíferos/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética
10.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 44-53, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37905340

RESUMO

The incidence and related death of hepatocellular carcinoma (HCC) have increased over the past decades. However, the molecular mechanisms underlying HCC pathogenesis are not fully understood. Long noncoding RNA (lncRNA) RP11-495P10.1 has been proven to be closely associated with the progression of prostate cancer, but its role and specific mechanism in HCC are still unknown. Here, we identify that RP11-495P10.1 is highly expressed in HCC tissues and cells and contributes to the proliferation of HCC cells. Moreover, this study demonstrates that RP11-495P10.1 affects the proliferation of HCC by negatively regulating the expression of nuclear receptor subfamily 4 group a member 3 (NR4A3). Glycometabolism reprogramming is one of the main characteristics of tumor cells. In this study, we discover that RP11-495P10.1 regulates glycometabolism reprogramming by changing the expression of pyruvate dehydrogenase kinase 1 (PDK1) and pyruvate dehydrogenase (PDH), thus contributing to the proliferation of HCC cells. Furthermore, knockdown of RP11-495P10.1 increases enrichment of H3K27Ac in the promoter of NR4A3 by promoting the activity of PDH and the production of acetyl-CoA, which leads to the increased transcription of NR4A3. Altogether, RP11-495P10.1 promotes HCC cell proliferation by regulating the reprogramming of glucose metabolism and acetylation of the NR4A3 promoter via the PDK1/PDH axis, which provides an lncRNA-oriented therapeutic strategy for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Receptores de Esteroides , Humanos , Masculino , Acetilação , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Glucose , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/metabolismo
11.
Front Endocrinol (Lausanne) ; 14: 1256877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854197

RESUMO

Thyroid hormone (TH) signaling plays a major role in mammalian brain development. Data obtained in the past years in animal models have pinpointed GABAergic neurons as a major target of TH signaling during development, which opens up new perspectives to further investigate the mechanisms by which TH affects brain development. The aim of the present review is to gather the available information about the involvement of TH in the maturation of GABAergic neurons. After giving an overview of the kinds of neurological disorders that may arise from disruption of TH signaling during brain development in humans, we will take a historical perspective to show how rodent models of hypothyroidism have gradually pointed to GABAergic neurons as a main target of TH signaling during brain development. The third part of this review underscores the challenges that are encountered when conducting gene expression studies to investigate the molecular mechanisms that are at play downstream of TH receptors during brain development. Unravelling the mechanisms of action of TH in the developing brain should help make progress in the prevention and treatment of several neurological disorders, including autism and epilepsy.


Assuntos
Hipotireoidismo , Doenças do Sistema Nervoso , Animais , Humanos , Hormônios Tireóideos/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Hipotireoidismo/genética , Roedores/metabolismo , Mamíferos/metabolismo , Neurônios GABAérgicos/metabolismo
12.
Chemosphere ; 341: 140031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660785

RESUMO

6:2 fluorotonic carboxylic acid (6:2 FTCA), a novel substitute for perfluorooctanoic acid (PFOA), is being used gradually in industrial production such as coatings or processing aids, and its detection rate in the aqueous environment is increasing year by year, posing a potential safety risk to aquatic systems and public health. However, limited information is available on the effects and mechanism of 6:2 FTCA. Therefore, this study was conducted to understand better the neuroendocrine effects of early exposure to 6:2 FTCA and the underlying mechanisms on zebrafish. In this study, zebrafish embryos were treated to varied doses of 6:2 FTCA (0, 0.08 µg/mL, 0.8 µg/mL and 8 µg/mL) at 4 h post-fertilization (hpf) for a duration of six days, which exhibited a pronounced inhibition of early growth and induced a disorganized swim pattern characterized by reduced total swim distance and average swim speed. Simultaneously, the thyroid development of zebrafish larvae was partially hindered, accompanied by decreased T3 levels, altered genes associated with the expression of thyroid hormone synthesis, transformation and transportation and neurotransmitters associated with tryptophan and tyrosine metabolic pathways. Molecular docking results showed that 6:2 FTCA has a robust binding energy with the thyroid hormone receptor (TRß). Moreover, exogenous T3 supplementation can partially restore the adverse outcomes. Our findings indicated that 6:2 FTCA acts as a thyroid endocrine disruptor and can induce neuroendocrine toxic effects. Furthermore, our results show that targeting TRß may be a potentially therapeutic strategy for 6:2 FTCA-induced neuroendocrine disrupting effects.


Assuntos
Hormônios Tireóideos , Peixe-Zebra , Animais , Simulação de Acoplamento Molecular , Glândula Tireoide , Receptores dos Hormônios Tireóideos
13.
Vitam Horm ; 123: 503-523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717996

RESUMO

Thyroid hormone (T3) plays critical roles in organ metabolism and development in vertebrates. Anuran metamorphosis is perhaps the most dramatic and best studied developmental process controlled by T3. Many changes in different organs/tissues during anuran metamorphosis resemble the maturation/remodeling of the corresponding organs/tissues during mammalian postembryonic development. The plasma T3 level peaks during both anuran metamorphosis and mammalian postembryonic development. T3 exerts its developmental function through transcriptional regulation via T3 receptors (TRs). Studies on the metamorphosis of two highly related anurans, pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, have led to a dual function model for TRs during development. This has been supported by strong molecular and genetic evidence. Here we review some of the evidence with a focus on more recent gene knockout studies in Xenopus tropicalis. These studies have not only supported the model but also revealed novel and TR subtype-specific roles during Xenopus development, particularly a critical role of TRα in controlling developmental timing and rate.


Assuntos
Mamíferos , Receptores dos Hormônios Tireóideos , Animais , Xenopus laevis , Xenopus , Receptores dos Hormônios Tireóideos/genética
14.
Redox Rep ; 28(1): 2247150, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37581334

RESUMO

Pancreatic islet ß-cells weaken under oxidative stress. In this study, human pancreatic islet-derived 1.1B4 cells were exposed to H2O2 and analysed using a human microarray, which revealed that heme oxygenase 1 (HMOX1), glutamate-cysteine ligase, early growth response 1, nuclear receptor subfamily 4 group A member 3 (NR4A3) and jun B proto-oncogene were upregulated, whereas superoxide dismutase 1 and catalase were not. Expression of NR4A3 rapidly increased after H2O2 addition, and the 1.1B4 cells treated with siRNA targeting NR4A3 became sensitive to H2O2; further, HMOX1 expression was strongly inhibited, suggesting that NR4A3 is an oxidative stress-responsive transcription factor that functions through HMOX1 expression in pancreatic islet ß-cells. Expression of cyclin E1 and cyclin-dependent kinase 1 was also inhibited by siRNAs targeting NR4A3.


Assuntos
Ilhotas Pancreáticas , Receptores de Esteroides , Humanos , Antioxidantes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peróxido de Hidrogênio/farmacologia , Ilhotas Pancreáticas/metabolismo , Estresse Oxidativo , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
15.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569727

RESUMO

Proper brain development essentially depends on the timed availability of sufficient amounts of thyroid hormone (TH). This, in turn, necessitates a tightly regulated expression of TH signaling components such as TH transporters, deiodinases, and TH receptors in a brain region- and cell-specific manner from early developmental stages onwards. Abnormal TH levels during critical stages, as well as mutations in TH signaling components that alter the global and/or local thyroidal state, result in detrimental consequences for brain development and neurological functions that involve alterations in central neurotransmitter systems. Thus, the question as to how TH signaling is implicated in the development and maturation of different neurotransmitter and neuromodulator systems has gained increasing attention. In this review, we first summarize the current knowledge on the regulation of TH signaling components during brain development. We then present recent advances in our understanding on how altered TH signaling compromises the development of cortical glutamatergic neurons, inhibitory GABAergic interneurons, cholinergic and dopaminergic neurons. Thereby, we highlight novel mechanistic insights and point out open questions in this evolving research field.


Assuntos
Receptores dos Hormônios Tireóideos , Hormônios Tireóideos , Hormônios Tireóideos/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Glândula Tireoide/metabolismo , Encéfalo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
16.
Eur Thyroid J ; 12(5)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458724

RESUMO

Transducin ß-like 1 X-linked receptor 1 (TBL1XR1) is a WD40 repeat-containing protein and part of the corepressor complex SMRT/NCoR that binds to the thyroid hormone receptor (TR). We recently described a mutation in TBL1XR1 in patients with Pierpont syndrome. A mouse model bearing this Tbl1xr1 mutation (Tbl1xr1Y446C/Y446C ) displays several aspects of the Pierpont phenotype. Although serum thyroid hormone (TH) concentrations were unremarkable in these mice, tissue TH action might be affected due to the role of TBL1XR1 in the SMRT/NCoR corepressor complex. The aim of the present study was to evaluate tissue TH metabolism and action in a variety of tissues of Tbl1xr1Y446C/Y446C mice. We studied the expression of genes involved in TH metabolism and action in tissues of naïve Tbl1xr1Y446C/Y446C mice and wild type (WT) mice. In addition, we measured deiodinase activity in liver (Dio1 and Dio3), kidney (Dio1 and Dio3) and BAT (Dio2). No striking differences were observed in the liver, hypothalamus, muscle and BAT between Tbl1xr1Y446C/Y446C and WT mice. Pituitary TRα1 mRNA expression was lower in Tbl1xr1Y446C/Y446C mice compared to WT, while the mRNA expression of Tshß and the positively T3-regulated gene Nmb were significantly increased in mutant mice. Interestingly, Mct8 expression was markedly higher in WAT and kidney of mutants, resulting in (subtle) changes in T3-regulated gene expression in both WAT and kidney. In conclusion, mice harboring a mutation in TBL1XR1 display minor changes in cellular TH metabolism and action. TH transport via MCT8 might be affected as the expression is increased in WAT and kidney. The mechanisms involved need to be clarified.


Assuntos
Hormônios Tireóideos , Transducina , Animais , Camundongos , Proteínas Correpressoras/metabolismo , Receptores dos Hormônios Tireóideos/genética , RNA Mensageiro , Hormônios Tireóideos/metabolismo , Transducina/genética
17.
Rev. int. med. cienc. act. fis. deporte ; 23(91): 358-369, jul. 2023. tab, graf
Artigo em Inglês | IBECS | ID: ibc-226935

RESUMO

This professional exploration delves into the intricate realm of thyroid hormone receptor interactor 13 (TRIP13) and angiopoietin-1 (ANGPT1) within the context of small cell lung cancer (SCLC). Drawing parallels to the precision and teamwork exemplified by football players on the field, we meticulously investigate the expression patterns and correlations of these molecular players in the complex landscape of SCLC. Our study encompassed a cohort of 78 SCLC patients treated at our institution between January 2015 and April 2017. Through rigorous immunohistochemical staining, we scrutinized the expression profiles of TRIP13 and ANGPT1 within tumor tissues, seeking to unravel their associations with clinicopathological characteristics and progression-free survival. Noteworthy findings emerged from our analysis. We observed significantly elevated positive expression rates of TRIP13 in SCLC tissues with lower differentiation levels and liver metastases, highlighting the analogy to football players' precise maneuvers. Similarly, ANGPT1 exhibited markedly increased positive expression rates in cases with larger tumor diameters, lower differentiation, and liver metastases, akin to a coordinated football team's collective effort. Our professional exploration uncovered a compelling positive correlation between the expression levels of TRIP13 and ANGPT1 in SCLC, akin to the synergy seen among football players on the field. This molecular partnership shed light on an intriguing aspect of SCLC's pathophysiology. The impact on progression-free survival time further emphasized the clinical relevance of TRIP13 and ANGPT1 in SCLC. Patients expressing both TRIP13 and ANGPT1 or either molecule alone experienced significantly shorter mean progression-free survival times, akin to the swift tactics and strategies employed by football players in a high-stakes game. (AU)


Assuntos
Humanos , Angiopoietina-1 , Receptores dos Hormônios Tireóideos , Carcinoma de Pequenas Células do Pulmão , Atletas , Futebol , Intervalo Livre de Progressão
18.
SAR QSAR Environ Res ; 34(4): 267-284, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139950

RESUMO

Some adverse effects of hydroxylated polychlorinated biphenyls (OH-PCBs) in humans are presumed to be initiated via thyroid hormone receptor (TR) binding. Due to the trial-and-error approach adopted for OH-PCB selection in previous studies, experiments designed to test the TR binding hypothesis mostly utilized inactive OH-PCBs, leading to considerable waste of time, effort and other material resources. In this paper, linear discriminant analysis (LDA) and binary logistic regression (LR) were used to develop classification models to group OH-PCBs into active and inactive TR agonists using radial distribution function (RDF) descriptors as predictor variables. The classifications made by both LDA and LR models on the training set compounds resulted in an accuracy of 84.3%, sensitivity of 72.2% and specificity of 90.9%. The areas under the ROC curves, constructed with the training set data, were found to be 0.872 and 0.880 for LDA and LR models, respectively. External validation of the models revealed that 76.5% of the test set compounds were correctly classified by both LDA and LR models. These findings suggest that the two models reported in this paper are good and reliable for classifying OH-PCB congeners into active and inactive TR agonists.


Assuntos
Bifenilos Policlorados , Humanos , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Bifenilos Policlorados/farmacologia , Glândula Tireoide/metabolismo , Relação Quantitativa Estrutura-Atividade , Receptores dos Hormônios Tireóideos/metabolismo , Hormônios , Hidroxilação
19.
Front Endocrinol (Lausanne) ; 14: 1174600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033230

RESUMO

The retina is increasingly recognized as a target of thyroid hormone. We previously reported critical functions for thyroid hormone receptor TRß2, encoded by Thrb, in cones, the photoreceptors that mediate color vision. TRß1, another Thrb receptor isoform, is widely expressed in other tissues but little studied in the retina. Here, we investigate these N-terminal isoforms by RNA-sequencing analysis and reveal a striking biphasic profile for TRß1 in mouse and human retina. In contrast to the early TRß2 peak, TRß1 peaks later during retinal maturation or later differentiation of human retinal organoids. This switch in receptor expression profiles was confirmed using lacZ reporter mice. TRß1 localized in cones, amacrine cells and ganglion cells in contrast to the restricted expression of TRß2 in cones. Intriguingly, TRß1 was also detected in the retinal pigmented epithelium and in anterior structures in the ciliary margin zone, ciliary body and iris, suggesting novel functions in non-retinal eye tissues. Although TRß1 was detected in cones, TRß1-knockout mice displayed only minor changes in opsin photopigment expression and normal electroretinogram responses. Our results suggest that strikingly different temporal and cell-specific controls over TRß1 and TRß2 expression may underlie thyroid hormone actions in a range of ocular cell types. The TRß1 expression pattern suggests novel functions in retinal and non-neural ocular tissues.


Assuntos
Receptores dos Hormônios Tireóideos , Retina , Camundongos , Humanos , Animais , Retina/metabolismo , Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Camundongos Knockout , Mamíferos/metabolismo
20.
J Cutan Pathol ; 50(7): 601-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37057374

RESUMO

Myoepithelial neoplasms of the skin and soft tissue are rare and share histopathologic features with their salivary gland counterpart. We present a case of an atypical myoepithelial neoplasm from the back of a 72-year-old female. This lesion harbored an EWSR1::NR4A3 gene fusion, a genetic signature characteristically seen in extraskeletal myxoid chondrosarcoma. To our knowledge, this is a unique case of an atypical cutaneous myoepithelial neoplasm harboring EWSR1::NR4A3 fusion.


Assuntos
Condrossarcoma , Mioepitelioma , Neoplasias de Tecido Conjuntivo e de Tecidos Moles , Receptores de Esteroides , Neoplasias Cutâneas , Neoplasias de Tecidos Moles , Feminino , Humanos , Idoso , Proteínas de Fusão Oncogênica/genética , Proteína EWS de Ligação a RNA/genética , Condrossarcoma/patologia , Fusão Gênica , Neoplasias de Tecidos Moles/patologia , Proteínas de Ligação a DNA/genética , Receptores dos Hormônios Tireóideos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...